Consider a function `f : R -> R; f(x^2 +yf(z)) = xf(x) + zf(y), AA x,y,z in R`
If `f(x) = 0,AA x in R` is not considered a part of solution set, then
A. `f(alpha) lt alpha^(4)AA alpha epsilon(0,1)`
B. `f(alpha) lt alpha^(2)AA alpha epsilon(0,1)`
C. `f(alpha)=alpha^(3)` for some `alpha epsilon R^(+)`
D. `lim_(alphato 0^(+)) (f(alpha))/(alpha) lt lim_(alpha to 0^(+)) (sinalpha)/(alpha)`