माना स्पर्श बिन्दु `(x_(1),y_(1))` है | प्रश्नानुसार, हमें स्पर्श बिन्दु का पथ ज्ञात करना है |
प्रदत्त वक्र `" "y^(2)=4a{x+a sin ((x)/(a))}" "…(1)`
`because" ""बिन्दु "P(x_(1),y_(1))`, वक्र पर स्थित है अत :
`y_(1)^(2)=4a{x_(1)+a sin((x_(1))/(a))}" "...(2)`
समीकरण (1) का x के सापेक्ष अवकलन करने पर,
`2y(dy)/(dx)=4a{1+cos""(x)/(a)}`
`implies" "(dy)/(dx)=(2a)/(y){1+cos((x)/(a))}`
बिन्दु `P(x_(1),y_(1))` पर खींची गई स्पर्शी की प्रवणता यदि m है तब,
`m=((dy)/(dx))_((x_(1)","y_(1)))=(2a)/(y_(1)){1+cos((x_(1))/(a))}`
प्रश्नानुसार स्पर्शी x-अक्ष के समानान्तर है, अत :
`m=0implies(2a)/(y_(1)){1+cos((x_(1))/(a))}=0`
`implies" "1+cos((x_(1))/(a))=0impliescos((x_(1))/(a))=-1" "...(3)`
समीकरण (2) से, `([(y_(1)^(2))/(4a)-x_(1)])/(a)=sin((x_(1))/(a))" "...(4)`
समीकरण (3) व (4) का वर्ग करके योग करने पर
`sin^(2)((x_(1))/(a))+cos^(2)((x_(1))/(a))=(-1)^(2)+((((y_(1)^(2))/(4a)-x_(1)))/(a))^(2)`
`implies" "1=1+((y_(1)^(2)-4ax_(1))/(4a^(2)))^(2)`
`implies" "1=(16a^(4)+(y_(1)^(2)-4ax_(1))^(2))/(16a^(4))`
`implies" "16a^(4)=16a^(4)+(y_(1)^(2)-4ax_(1))^(2)`
`implies" "y_(1)^(2)=4ax_(1)`
`:.` स्पर्श बिन्दु का पथ `y^(2)=4ax` है, जो स्पष्टत: एक परलवय है |