Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
66 views
in Mathematics by (78.7k points)
closed by
If both `Lim_(xrarrc^(-))f(x)` and `Lim_(xrarrc^(+))f(x)` exist finitely and are equal, then the function `f` is said to have removable discontinuity at `x=c`. If both the limits i.e. `Lim_(xrarrc^(-))f(x)` and `Lim_(xrarrc^(+))f(x)` exist finitely and are not equal, then the function `f` is said to have non-removable discontinuity at `x=c`.
Which of the following function not defined at `x=0` has removable discontinuity at the origin?
A. `f(x)=1/(1+2^(cotx))`
B. `f(x)=xsin(pi)/x`
C. `f(x)=1/(ln|x|)`
D. `f(x)=sin((|sinx|)/x)`

1 Answer

0 votes
by (83.3k points)
selected by
 
Best answer
Correct Answer - A::D
(A) `f(x)=1/(ln|x|) LHL=0= RHL`
(B)` f(x)=xsin(pi)/x LHL=0=RHL`
(C) `f(x)=1/(1+2^(cotx)) f(0)=` not define
`LHL=1`
`RHL=0impliesLHL!=RHL`
(D) `f(x)=sin((|sinx|)/x)LHL` (at `x=0`) `=sin(-1)=-sin1`
`RHL` (at` x=0`) `=sin1`
`LHL!=RHL`

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...