Correct Answer - A
Let `A=[(2,2,0),(0,1,0),(0,0,-1)]`
`therefore" "|A|=2(-1-0)-0+0=-2 ne 0`
`therefore" "A^(-1)` exists.
Consider`" "A A^(-1)=1`
`therefore" "[(2,0,0),(0,1,0),(0,0,-1)]A^(-1)=[(1,0,0),(0,1,0),(0,0,1)]`
Applying `R_(1) rarr (1)/(2)R_(1) and R_(3) rarr -R_(3)`, we get
`[(1,0,0),(0,1,0),(0,0,1)]A^(-1)=[(1//2,0,0),(0,1,0),(0,0,-1)]`
`A^(-1)[(1//2,0,0),(0,1,0),(0,0,-1)]`