Correct option is: D) \(1 + \frac{z^2}{c^2}\)
We have
x = a sec \(\theta\) cos \(\phi\) = \(\frac xa\) sec \(\theta\) cos \(\phi\).
y = b sec \(\theta\) sin \(\phi\) = \(\frac yb\) = sec \(\theta\) sin \(\phi\).
z = c tan \(\theta\)
Now, \(\frac {x^2}{a^2} + \frac {y^2}{b^2} = (\frac xa)^2 + (\frac yb)^2\)
= \((sec\, \theta \, cosc \, \phi)^2 + (sec\, \theta \, sin\, \phi)^2\)
= \(sec^2\theta \, cos^2\phi + sec^2\theta \, sin^2\phi\)
= \(sec^2\theta (cos^2\, \phi + sin^2\phi)\)
= \(sec^2\theta \) (\(\because\) \(cos^2 \phi + sin^2\phi = 1\))
= 1 + \(tan^2\theta\) (\(\because\) \(sec^2\theta = 1+ tan^2\theta\))
= 1+ \((\frac zc)^2\) (\(\because\) z = c \(\tan \theta = tan \theta = \frac zc\))
= 1 + \(\frac {z^2}{c^2}\)