Correct option is (C) 80
\(a_{16}=47\;\&\;a_{31}=92\)
\(\therefore a+15d=47\) ______________(1)
\(a+30d=92\) ______________(2) \((\because a_n=a+(n-1)d)\)
Subtract equation (1) from (2), we get
\((a+30d)-(a+15d)=92-47\)
\(\Rightarrow15d=45\)
\(\Rightarrow d=\frac{45}{15}=3\)
\(\therefore a=47-15d\) (From (1))
\(=47-15\times3\)
\(=47-45=2\)
\(\therefore a_{27}=a+26d\)
\(=2+26\times3\)
\(=2+78=80\)
Hence, \(27^{th}\) term of A.P. is 80.