Correct Answer - D
`m(d^(2)x)/(dt^(2)) = -kx -b(dx)/(dt)`
`m(d^(2)x)/(dt^(2)) + b(dx)/(dt) + kx = 0` , here `b` is demping coefficient
This has solution of type
`x = e^(lambda_(1))` substituting this
`mlambda^(2) + blambda + k = 0`
`lambda = (-b +- sqrt(b^(2) - 4mk))/(2m)`
on solving for `x`, we get
`x = e^((b)/(2m)t) , a cos (omega_(1) t - alpha)`
`omega_(1) = sqrt(omega_(0)^(2) - lambda^(2))` where `omega_(0) = sqrt((k)/(m))`
`lambda = +(b)/(2)`
So, average life `= (2)/(b)`