Correct Answer - A
Let `E_(i)` denote the event that the bag contains I blck and `(10-i)` white balls `(i=0,1,2,…,10).` Let A denote the event that the three balls drawn at random from the bag are black. We have,
`P(E_(i))=1/11(i=0,1,2...,10)`
`P(A//E_(i))=0"for" i=0,1,2and P(A//E_(i))=(""^(i)C_(3))/(""^(10)C_(3))"for"ige3`
`impliesP(A)=1/11xx(1)/(""^(10)C_(3))[""^(3)C_(3)+""^(4)C_(3)+...+""^(10)C_(3)]`
But `""^(3)C_(3)+""^(4)C_(3)+""^(5)C_(3)+...+""^(10)C_(3)=""^(4)C_(4)+""^(4)C_(3)+""^(5)C_(3)+...+""^(10)C_(3)`
`" "=""^(5)C_(4)+""^(5)C_(3)+""^(6)C_(3)+...+""^(10)C_(3)=""^(11)C_(4)`
`impliesP(A)=1/11xx(1)/(""^(10)C_(3))xx""^(11)C_(4)=((11xx10xx9xx8)/(4!))/(11xx(10xx9xx8)/(3!))=1/4`
`thereforeP(E_(9)//A)=(P(E_(9))P(A//E_(9)))/(P(A))=((1)/(11)xx(""^(9)C_(3))/(""^(10)C_(3)))/(1/4)=14/55`