Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
+1 vote
187 views
in Parabola by (94.1k points)
closed by
Find the equation of line which is normal to the parabola `x^(2)=4y` and touches the parabola `y^(2)=12x`.

1 Answer

0 votes
by (91.3k points)
selected by
 
Best answer
Normal to parabola `x^(2)=4y` having slope m is
`y=mx+2+(1)/(m^(2))` (1)
It is tangent to `y^(2)=12x`.
Now, tangent to above parabola having slope m is
`y=mx+(3)/(m)` (2)
Comparing (1) and (2), we get
`(1)/(m^(2))+2=(3)/(m)`
`rArr" "2m^(2)-3m+1=0`
`rArr" "(2m-1)(m-1)=0`
`rArr" "m=(1)/(2)orm=1`
Therefore, equations of lines are 2y=x+12 or y=x+3.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...