Given: m1 = 10 kg, m2 = 4 kg
u1 = 5 m/s, u2 = 2 m/s, e = \(\frac{1}{2}\)
To find: Velocity after impact (v1 and v2)
Formulae:
i. m1u1 + m2u2 = m1v1 + m2v2
ii. e = \((\frac{v_2-v_1}{u_1-u_2})\)
Calculation:
From formula (i),
10 × 5 + 4 × 2 = 10v1 + 4v2
∴ 5v1 + 2v2 = 29 … (1)
From formula (ii),
v2 – v1 = e(u1 - u2) = \(\frac{1}{2}\) (5 – 2) = \(\frac{3}{2}\)
∴ 2v2 – 2v1 = 3 … (2)
Solving (1) and (2), we have
∴ v1 = \(\frac{26}{7}\) m/s and v2 = \(\frac{73}{14}\) m/s
The respective velocities of the two masses are \(\frac{26}{7}\) m/s and \(\frac{73}{14}\) m/s.