
C is the square formed by lines.
x = ± 1 & y = ±1.
\(∮_c\)[(x2+xy)dx + (x2+y2)dy]
= (\(\int_{AB}\) + \(\int_{BC}\) + \(\int_{CD}\) + \(\int_{DA}\)) [(x2+xy)dx + (x2+y2)dy]
On line AB,
x = 1 & y is variable
∴ dx = 0 & -1 ≤ y ≤ 1
On line BC,
y = 1 & x is variable
∴ dx = 0 & 1 ≤ x ≤ -1
On line CD,
x = -1 & y is variable
∴ dx = 0 & 1 ≤ y ≤ -1
On line DA,
y = -1 & x is variable
∴ dy = 0 & -1 ≤ x ≤ -1
= \(\int_{-1}^1(1+y^2)dy\) + \(\int_{1}^{-1}(x^2+x)dx\) + \(\int_{1}^{-1}(1+y^2)dy\) + \(\int_{-1}^1(x^2-x)dx\)
= \([y + \frac{y^3}{3}]_{-1}^1 \) + \([\frac{x^3}{3}\) + \(\frac{x^2}{2}]^{-1}_1\) + \([y + \frac{y^3}{3}]_1^{-1}\) + \([\frac{x^3}{3}\)-\(\frac{x^2}{2}]^1_{-1}\)
= (1 + \(\frac{1}{3}\)) - (-1 - \(\frac{1}{3}\)) + (\(\frac{-1}{3}\) + \(\frac{1}{2}\)) - (\(\frac{1}{3}\)+\(\frac{1}{2}\)) + (-1-\(\frac{1}{3}\)) - (1+\(\frac{1}{3}\)) + (\(\frac{1}{3}\)-\(\frac{1}{2}\)) - (\(\frac{-1}{3}\) - \(\frac{1}{2}\))
= \(\frac{-2}{3}\) + 0 + \(\frac{2}{3}\) - 0
= 0