Correct Option is (C) 7 mg

\(E_i = E_f\)
\(\frac{1}{2} mv_o{^2}\) = \(\frac{1}{2} mv{^2} + mgh\)
\(\frac{1}{2} mv_o{^2}\) = \(\frac{1}{2} \times m \times (\sqrt{3rg})^2 + mgh\)
\(\frac{1}{2} mv_o{^2}\) = \(\frac{3}{2} mrg + mg(2r)\)
\(\frac{1}{2} mv_o{^2}\) = \(\frac{3}{2} mrg + 2mgr\)
\(\frac{1}{2} mv_o{^2}\) = \(\frac{3mrg \ + \ 4 mrg}{2}\)
\(mv_o{^2}\) = \(7mrg\)
\(v_o = \sqrt{7rg}\)
\(T = \frac{mv^2}{r}\)
\(= \frac{m}{r}(\sqrt{7rg})^2\)
\(T = 7mg\)