\(\frac{dy}{dx} - e^{x-y} = e^{x-y}\)
⇒ \(\frac{dy}{dx} = 2e^{x-y}\)----(i)
Let x - y = t
Then 1 - \(\frac{dy}{dx}=\frac{dt}{dx}\)
\(\therefore\) \(\frac{dt}{dx} = 1-2e^t\) (From (i))
⇒ \(\frac{dt}{1-2e^t}=dx\)
⇒ \(\frac{e^{-t}dt}{e^{-t}-2}=dx\)
⇒ \(\int\frac{e^{-t}}{e^{-t}-2}dt = \int dx\)
⇒ -log|e-t - 2| = x + c
\(\therefore\) -log|e-(x - y) - 2| = x + c is a solution of given differential equation.