Correct Answer - Option 2 : x = e
Explanation:
\(f(x)=\frac {\log (x)}{x}\)
For x = 1
\(f(1)=\frac {\log (1)}{1} = 0\) [∵ log(1) = 0]
For x = e
\(f(e)=\frac {\log (e)}{e} = \frac 1 e\) [∵ log(e) = 1]
For x = 1/e
\(f\left(\frac{1}{e}\right)=\frac {\log (\frac 1e)}{\frac 1e} \) = e [log (1) - log (e)] = e [0 - 1] = -e