Correct Answer - Option 4 :
\(G_e(s) = 1+ \dfrac{2}{s} + 3s\)
Concept:
The steady-state error for the second-order system when the input is unit step is defined as:
\(e_{ss}=\dfrac{1}{1+k_p}\)
Where the positional error constant is:
\(\mathop {\lim }\limits_{s \to 0} G\left( s \right)H\left( s \right) = {k_p}\)
G(s): Forward path gain
H(s): Feedback gain
To have the less steady-state error the positional error constant must be high.
Calculation:
Check the options and whichever gives the high Kp that is the answer for less error.
Forward gain = G(s) × GC(s)
Feedback gain = H(s) = 1
Option 1:
\(\mathop {\lim }\limits_{s \to 0} \dfrac{1}{s^2+2s+2}\dfrac{s+1}{s+2} \\= {k_p}=\frac{1}{4}\)
Option 2:
\(\mathop {\lim }\limits_{s \to 0} \dfrac{1}{s^2+2s+2}\dfrac{s+2}{s+1} \\= {k_p}=1\)
Option 3:
\(\mathop {\lim }\limits_{s \to 0} \dfrac{1}{s^2+2s+2}\dfrac{(s+1)(s+4)}{(s+2)(s+3)} \\= {k_p}=\dfrac{2}{6}\)
Option 4:
\(\mathop {\lim }\limits_{s \to 0} \dfrac{1}{s^2+2s+2}{\left(1+\dfrac{2}{s}+3s\right)} \\= {k_p}=\infty\)
If we select controller 4 then the steady-state error will be less.
ess = 0