Correct Answer - Option 1 :
\(f\left( x \right)\left\{ {\begin{array}{*{20}{c}} {2,\;\;\;\;if\;\;\;x = 3}\\ {x - 1,\;\;\;\;if\;\;\;x > 3}\\ {\frac{{x + 3}}{3},\;\;\;\;if\;\;\;\;x < 3} \end{array}} \right.\)
The correct answer is option 1.
If \(Lt_{x \to a^-} f(x) = Lt_{ x \to a^+ } f(x)=f(a) \space then f(x) is \space continuous \space at \space x=a \)
Option 1: Correct
\(f\left( x \right)\left\{ {\begin{array}{*{20}{c}} {2,\;\;\;\;if\;\;\;x = 3}\\ {x - 1,\;\;\;\;if\;\;\;x > 3}\\ {\frac{{x + 3}}{3},\;\;\;\;if\;\;\;\;x < 3} \end{array}} \right.\)
\(f(3) = 2\)
\(\\Lt_{x \to 3^+} f(x) = Lt_{x \to 3} {(x-1)}=2, \)
\(Lt_{x \to 3^-} f(x) = Lt_{x \to 3} {(x+3) \over 3}=2,\)
Therefore the function is continuous at x = 3