Correct Answer - Option 1 : 4ϵ
0\({\bar a_X}\)
Concept:
D = ϵ0 E + P ---(1)
∵ P = polarization
Where \(D = {\epsilon_0}{\epsilon_r}\;\vec E\) ---(2)
ϵr = Relative Permeability
\({\epsilon_0}{\epsilon_r}\;\vec E = {\epsilon_0}\;\vec E + \vec P\)
\(\vec P = {\epsilon_0}\left( {{\epsilon_r} - 1} \right)\;\vec E\)
∵ Xe = ϵr – 1 → susceptibility
\(\vec P = {\epsilon_0}{X_e}\;\vec E\) ---(3)
Calculation:
Given:
\({E_0} = 6\;\overrightarrow {{a_x}} = 3\;{\epsilon_0} = {\epsilon_r}{\epsilon_0}\;\;So\;\;{\epsilon_r} = 3\)
\(\vec P = {\epsilon_0}\left( {{\epsilon_r} - 1} \right)\vec E\)
= \({\epsilon_0}\left( {3 - 1} \right)\;6\;\overrightarrow {{a_x}} \)
\(\vec P = 12\;{\epsilon_0}\;\overrightarrow {{a_x}} \)
None of the option matches with the solution.