u = tan-1(\(\frac{xy}{\sqrt{1+x^2+y^2}}\))
⇒ tan u = \(\frac{xy}{\sqrt{1+x^2+y^2}}\)
Partial differentiate both sides w.r.t. y we get
sec2u \(\frac{\partial u}{\partial y} = \cfrac{x\sqrt{1+x^2+y^2}-xy\times\frac{2y}{2\sqrt{1+x^2+y^2}}}{1+x^2+y^2}\)
⇒ sec2u \(\frac{\partial u}{\partial y} = \frac{x(1+x^2+y^2-y^2)}{(1+x^2+y^2)^{3/2}}\)
⇒ sec2u \(\frac{\partial u}{\partial y} = \frac{x(1+x^2)}{(1+x^2+y^2)^{3/2}}\)
⇒ (1 + tan2u) \(\frac{\partial u}{\partial y} = \frac{x(1+x^2)}{(1+x^2+y^2)^{3/2}}\)
⇒ (1 + \(\frac{x^2y^2}{1+x^2+y^2}\)) \(\frac{\partial u}{\partial y}\) = \( \frac{x(1+x^2)}{(1+x^2+y^2)^{3/2}}\)
⇒ (\(\frac{1+x^2+y^2+x^2y^2}{1+x^2+y^2}\))\(\frac{\partial u}{\partial y}\) = \( \frac{x(1+x^2)}{(1+x^2+y^2)^{3/2}}\)
⇒ \(\frac{\partial u}{\partial y}\) = \(\frac{x}{(1+x^2+y^2)^{1/2}(1+y^2)}\)
By partial differentiating both sides w.r.t. x, we get
\(\frac{\partial u}{\partial x\partial y}=\frac{1}{1+y^2}\)\(\cfrac{\sqrt{1+x^2+y^2}-x\times\frac{2x}{2\sqrt{1+x^2+y^x}}}{1+x^2+y^2}\)
⇒ \(\frac{\partial u}{\partial x \partial y}=\frac1{1+y^2}\times\frac{1+x^2+y^2-x^2}{(1+x^2+y^2)^{3/2}}\)
\(=\frac{1+y^2}{(1+y^2)(1+x^2+y^2)^{3/2}}\) = \(\frac{1}{(1+x^2+y^2)^{3/2}}\)
Hence Proved