Correct Answer - Option 2 : 1.29 um
Concept:
Assume it is a single-mode step-index fiber.
For single-mode step index fiber normalized frequency number (V) ranges:
0 < V ≤ 2.405
∴ \({V_{max}} = \frac{{2\pi \cdot a \cdot \left( {N.A} \right)}}{{{\lambda _c}}}\)
a ⇒ Core radius
For max V, the wavelength is taken as the critical wavelength.
Given:
Core diameter (d) = 3 μm
Core indexes (n1) = 1.545
Calculation:
\(N.A = \sqrt {n_1^2 - n_2^2} = 0.326\)
\({\lambda _c} = \frac{{2\pi \cdot a \cdot \left( {N.A.} \right)}}{{{V_{max}}}} = \frac{{2\pi \; \times \;1.5\; \times\; 0.326}}{{2.405}}\)
λc = 1.29 μm