Correct Answer - Option 2 :
\(- \frac{{mg{R^2}}}{{2\left( {R + h} \right)}}\)
Concept:
For a satellite orbiting the earth’s surface at a height ‘h’ from the earth’s surface
The potential energy is given by
\(PE = - \frac{{GMm}}{{R + h}}\)
The kinetic energy is given by
\(KE = \frac{1}{2}m{v^2} = \frac{1}{2}m\left( {\frac{{GM}}{{R + h}}} \right) = \frac{{GMm}}{{2\left( {R + h} \right)}}\)
Calculation:
Given A satellite of mass m is orbiting the earth (radius R) at a height h from its surface,
The total energy is given by
E = KE + PE
\(E = \frac{{GMm}}{{2\left( {R + h} \right)}} - \frac{{GMm}}{{R + h}} = - \frac{{GMm}}{{2\left( {R + h} \right)}}\)
\( \Rightarrow E = - \frac{1}{2}\frac{{GM}}{{{R^2}}}\frac{{m{R^2}}}{{\left( {R + h} \right)}}\)
\(\Rightarrow E = - \frac{{1mg{R^2}}}{{2\left( {R + h} \right)}}\)