Correct Answer - Option 3 : x
2 – 2xy – y
2 = k
The given curve is:
x2 + 2xy – y2 = k
\(2x + 2y + 2x\frac{{dy}}{{dx}} - 2y\frac{{dy}}{{dx}} = 0\)
\(\left( {x - y} \right)\frac{{dy}}{{dx}} = - x - y\)
\(\frac{{dy}}{{dx}} = \frac{{y + x}}{{y - x}}\)
Replacing \(\frac{{dy}}{{dx}}\) by \(\frac{{ - dx}}{{dy}}\) , we get:
\(\frac{{ - dx}}{{dy}} = \frac{{y + x}}{{y - x}}\)
\(\frac{{dx}}{{dy}} = \frac{{x + y}}{{x - y}}\)
\(\frac{{dy}}{{dx}} = \frac{{x - y}}{{x + y}}\) ---(1)
This is a homogenous equation
i.e. y = υx
\(\frac{{dy}}{{dx}} = \upsilon + x\frac{{d\upsilon }}{{dx}}\) ---(2)
From (1) and (2), we get:
\(\upsilon + x\frac{{d\upsilon }}{{dx}} = \frac{{\upsilon - \upsilon x}}{{\upsilon + \upsilon x}}\)
\(x\frac{{d\upsilon }}{{dx}} = \frac{{1 - \upsilon }}{{1 + \upsilon }} - \upsilon \)
= \(\frac{{1 - 2\upsilon - {\upsilon ^2}}}{{1 + \upsilon }}\)
Integrating both sides, we get:
\(\smallint \frac{{1 + \upsilon }}{{1 - 2\upsilon - {\upsilon ^2}}}d\upsilon = \smallint \frac{{dx}}{x}\)
\(\frac{{ - 1}}{2}\smallint \frac{{ - 2\left( {1 + \upsilon } \right)}}{{1 - 2\upsilon - {\upsilon ^2}}}d\upsilon = \smallint \frac{{dx}}{x}\)
log (1 – 2υ – υ2) = -2 log x + log c
\({x^2} - 2xy - {y^2} = c\)
The correct answer is:
x2 – 2xy – y2 = k