Correct Answer - Option 3 : ax
2 + by
2 + cz
2 = c
1, a
2x
2 + b
2y
2 + c
2z
2 = c
2
Explanation:
Using the Lagrange method of multipliers the differential equation can be solved.
Let:
\(\frac{{adx}}{{\left( {b - c} \right)yz}} = \frac{{bdy}}{{\left( {c - a} \right)zx}} = \frac{{cdz}}{{\left( {a - b} \right)xy}} = k\)
\( \Rightarrow \frac{{axdx}}{{\left( {b - c} \right)xyz}} = \frac{{bydy}}{{\left( {c - a} \right)xyz}} = \frac{{czdz}}{{\left( {a - b} \right)xyz}}\)
\( = \frac{{axdx + bydy + czdz}}{{\left( {b - c} \right)xyz + \left( {c - a} \right)xyz + \left( {a - b} \right)xyz}}\)
\(\frac{{axdx + bydy + czdz}}{0} = k\)
axdx + bydy + czdz = 0
Integrating, we get:
\(\frac{{a{x^2}}}{2} + \frac{{b{y^2}}}{2} + \frac{{c{z^2}}}{2} = {c_1}\)
∴ ax2 + by2 + cz2 = 2c1 = c = constant
Again,
\(\frac{{adx}}{{\left( {b - c} \right)yz}} = \frac{{bdy}}{{\left( {c - a} \right)zx}} = \frac{{cdz}}{{\left( {a - b} \right)xy}} = k,\) say
\( \Rightarrow \frac{{a.\left( {ax} \right)dx}}{{a\left( {b - c} \right)xyz}} = \frac{{b.\left( {by} \right)dy}}{{b\left( {c - a} \right)xyz}} = \frac{{c\left( {cz} \right)dz}}{{c\left( {a - b} \right)xyz}}\)
\(= \frac{{{a^2}xdx + {b^2}ydy + {c^2}zdz}}{{a\left( {b - c} \right)xyz + b\left( {c - a} \right)xyz + c\left( {a - b} \right)xyz}}\)
= k
\(\frac{{{a^2}xdx + {b^2}ydy + {c^2}zdz}}{0} = k\)
⇒ a2xdx + b2ydy + c2zdz = 0
Integrating, we get →
\(\frac{{{a^2}{x^2}}}{2} + \frac{{{b^2}{y^2}}}{2} + \frac{{{c^2}{z^2}}}{2} = {c_2}\)
a2x2 + b2y2 + c2z2 = 2c2 = c3 (constant)