Correct Answer - Option 3 :
94.25 kN
Concept:
Maximum shear stress theory (Guest & Tresca’s Theory):
\({{\rm{\tau }}_{{\rm{max}}}} \le \frac{{{{\rm{σ }}_{\rm{y}}}}}{2}\) (for no failure)
\({{\rm({σ }}_1} - {{\rm{σ }}_2}),{{\rm({σ }}_2} - {{\rm{σ }}_3}),{{\rm({σ }}_3} - {{\rm{σ }}_1}) \le \left( {\frac{{{{\rm{σ }}_{\rm{y}}}}}{{{\rm{FOS}}}}} \right)\) (for design)
For uni-axial loading, (σ2 = σ3 = 0)
\(σ_1\le σ_{yt}\) [∵ FOS = 1]
Calculation:
Given:
d = 20 mm, σyt = 300 MPa
Guest & Tresca’s Theory for uni-axial loading is-
\(σ_1\le σ_{yt}\)
∴ σ1 = 300 MPa
\(σ_1=\frac{Load}{Area}\)
Load = σ1 × Area ⇒ \(\sigma_1\times\frac{\pi}{4}d^2\)
Load = \(300\;\times\;\frac{\pi}{4}\;\times\;20^2 \Rightarrow 94.25\; kN\)