Correct Answer - Option 3 : Both 1) and 2)
Concept:
Method 1.
To be called homogeneous a function \({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right)\) must satisfy the below equation.
f (zx, zy) = zn f (x, y)
n is the degree of homogeneity.
In other words, we need to follow the below steps to check for homogeneity:
- Multiply each variable in the function f (x, y) with z to get f (zx, zy).
- Then find if f (zx, zy) can be arranged to get zn f (x, y) or not.
- If we can get f (zx, zy) = zn f (x, y) then homogeneous else not.
Method 2.
An expression of the form
f (x, y) = a0xn + a1xn-1 y + a2 xn-2 y2 + … + anyn
Where every term is of the nth degree is called a homogeneous function of degree n.
The equation can be rewritten as:
\({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = {{\rm{x}}^{{\rm{n\;}}}}\left[ {{{\rm{a}}_0} + {{\rm{a}}_1}\left( {\frac{{\rm{y}}}{{\rm{x}}}} \right) + {{\rm{a}}_2}{{\left( {\frac{{\rm{y}}}{{\rm{x}}}} \right)}^2} + \ldots + {{\rm{a}}_{\rm{n}}}{{\left( {\frac{{\rm{y}}}{{\rm{x}}}} \right)}^{\rm{n}}}} \right]\)
\(\therefore {\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right) = {{\bf{x}}^{{\bf{n}}\;}}\phi \left( {\frac{{\bf{y}}}{{\bf{x}}}} \right)\)
And also,
\({\rm{f}}\left( {{\rm{x}},{\rm{y}}} \right) = {{\rm{y}}^{{\rm{n\;}}}}\left[ {{{\rm{a}}_0}{{\left( {\frac{{\rm{x}}}{{\rm{y}}}} \right)}^{\rm{n}}} + {{\rm{a}}_1}{{\left( {\frac{{\rm{x}}}{{\rm{y}}}} \right)}^{{\rm{n}} - 1}} + {{\rm{a}}_2}{{\left( {\frac{{\rm{x}}}{{\rm{y}}}} \right)}^{{\rm{n}} - 2}} + \ldots + {{\rm{a}}_{\rm{n}}}} \right]\)
\(\therefore {\bf{f}}\left( {{\bf{x}},{\bf{y}}} \right) = {{\bf{y}}^{\bf{n}}}\phi \left( {\frac{{\bf{x}}}{{\bf{y}}}} \right)\)