Correct Answer - Option 1 : 0.018 cm / sec
Concept:
Settling velocity of particles when Reynolds no less than 0.5 is given by Stocks Law:
\(V = \frac{{\left( {G - 1} \right){\gamma _w}{d^2}}}{{18\;\mu }}\)
Where,
G is the Specific Gravity
d is the particle size
μ is the dynamic viscosity of water.
Calculation:
Given,
G = 2.65; Re < 0.5; d = 2 × 10-3 cm
Kinematic viscosity = 2 × 10-2 cm2/sec
Let density of water is 1000 kg/m3
Dynamic viscosity of water, μ = 2 × 10-2 × 10-4 × 1000 = 2 × 10-3 kg/m-sec
The settling velocity is
\(V = \frac{{\left( {G - 1} \right){\gamma _w}{d^2}}}{{18\;\mu }}\)
\(V = \frac{{\left( {2.65 \;- \;1} \right)\; \times \;9810\;{{\left( {2\; \times\; {{10}^{ - 3}}\; \times\; {{10}^{ - 2}}} \right)}^2}}}{{18\; \times\; 2\; \times \;{{10}^{ - 3}}}}\)
V = 0.000179 m/sec = 0.0179 cm/sec