Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
324 views
in General by (108k points)
closed by
If \(\vec E = - \left( {2{y^3} - 3y{z^2}} \right)\hat x - \left( {6x{y^2} - 3x{z^2}} \right)\hat y + \left( {6xyz} \right)\hat z\) is the electric field in a source free region, a valid expression for the electrostatic potential is
1. xy3 – yz2
2. 2xy3 – xyz2
3. y3 + xyz2
4. 2xy3 – 3xyz2

1 Answer

0 votes
by (101k points)
selected by
 
Best answer
Correct Answer - Option 4 : 2xy3 – 3xyz2

Concept:

The electric field is related to the potential as:

\(\vec E = - ∇ V\)

\(∇ =\frac{\partial}{\partial x}\hat a_x+\frac{\partial}{\partial y}\hat a_y+\frac{\partial}{\partial z}\hat a_z\)

Calculation:

We can verify all options with the Maxwell equation \(\vec E = - ∇ V\)

Option 1: V = xy3 – yz2

\( - ∇ V=-(\frac{\partial}{\partial x} (xy^3 – yz^2)\hat a_x+\frac{\partial}{\partial y}(xy^3 – yz^2)\hat a_y+\frac{\partial}{\partial z}(xy^3 – yz^2)\hat a_z)\)

= -y3 ax - (3xy2 - z2) ay - 2yz az

Since this is not equal to the given Electric field, this cannot be a valid expression for the given electrostatic potential.

Option 2: V = 2xy3 – xyz2

\( - ∇ V=-(\frac{\partial}{\partial x} (2xy^3 – xyz^2)\hat a_x+\frac{\partial}{\partial y}(2xy^3 – xyz^2)\hat a_y+\frac{\partial}{\partial z}(2xy^3 – xyz^2)\hat a_z)\)

= -[(2y3 - yz2) ax + (6xy2 - xz2) ay - 2xyz az]

Since this is not equal to the given Electric field, this cannot be a valid expression for the given electrostatic potential.

Option 3V = y3 + xyz2

\( - ∇ V=-(\frac{\partial}{\partial x} (y^3 + xyz^2)\hat a_x+\frac{\partial}{\partial y}(y^3 + xyz^2)\hat a_y+\frac{\partial}{\partial z}(y^3 + xyz^2)\hat a_z)\)

= -[yz2 ax + (3y2 + xz2) ay + 2xyz az]

Since this is not equal to the given Electric field, this cannot be a valid expression for the given electrostatic potential.

Option 4V = 2xy3 – 3xyz2

\( - ∇ V=-(\frac{\partial}{\partial x} (2xy^3 – 3xyz^2)\hat a_x+\frac{\partial}{\partial y}(2xy^3 – 3xyz^2)\hat a_y+\frac{\partial}{\partial z}(2xy^3 – 3xyz^2)\hat a_z)\)

= -[(2y3 - 3yz2)ax + (6xy2 - 3xz2) ay - 6xyz az]

= -(2y3 - 3yz2)ax - (6xy2 - 3xz2) ay + 6xyz az

Since E = - ∇ V for this case, this this is a valid expression for the given electrostatic potential.

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...