Correct Answer - Option 1 : 3.5 kNm
Concept:
Torque exerted is given by:
T = Iα
where I = moment of inertia
α = angular acceleration
Calculation:
Given:
diameter of disc (d) = 1 m, thickness (t) = 0.2 m, mass density (ρ) = 7200 kg/m3,
Angular speed (N) = 350 rpm, ω = 0, t = 1.5 s
Now,
Mass of the disc (m) = density × volume of disc
\(m = \rho \times \frac{\pi }{4}{d^2} \times t = 7200 \times \frac{\pi }{4} \times {1^2} \times 0.2 = 1130.973\;kg\)
Moment of inertia of disc (I)
\(I = \frac{{m{r^2}}}{2} = \frac{{1130.973 \times {{\left( {0.5} \right)}^2}}}{2} = 141.371\;kg.{m^2}\)
Initial angular velocity (ωo) is given by:
\({\omega _o} = \frac{{2 \times \pi \times N}}{{60}} = \frac{{2 \times \pi \times 350}}{{60}} = 36.65\;rad/s\)
Now, from newton’s equation of motion
ω = ωo + αt
0 = 36.65 + α(1.5)
\( \Rightarrow \alpha = \; - \frac{{36.65}}{{1.5}} = 24.43\;rad/{s^2}\)
Torque required is:
T = Iα
T = 141.371 × 24.43 = 3454.34 Nm = 3.45 kNm ≃ 3.5 kNm