Correct Answer - Option 2 : of the order h
2
Concept:
Trapezoidal rule states that for a function y = f(x)
For the trapezoidal method with only a single subinterval, we have
\(\mathop \smallint \nolimits_{{x_0}}^{{x_0} + nh} f\left( x \right)dx - \frac{h}{2}\left[ {f\left( \alpha \right) + f\left( {\alpha + h} \right)} \right] = - \frac{{{h^2}}}{{12}}{f^{''}}\left( c \right)\)
for some c in the interval [α, α + h].
The general trapezoidal rule Tn(f) was obtained by applying the simple trapezoidal rule to a subdivision of the original interval of integration.
Then the error, En(f) = \(\mathop \smallint \limits_b^a f\left( x \right)dx - Tn\left( f \right)\)
Then combining these errors, we obtain
∴ \(En\left( f \right) = - \frac{{{h^2}n}}{{12}}\left[ {\frac{{{f^{''}}\left( {{y_1}} \right) + ... + {f^{''}}\left( {{y_n}} \right)}}{n}} \right]\)
∴ The error in the trapezoidal rule is of the order h2