Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
144 views
in Mathematics by (96.6k points)
closed by
Let \({S_k} = \frac{{1 + 2 + 3 + \ldots + k}}{k}.{\rm{\;If\;}}S_1^2 + S_2^2 + \ldots + S_{10}^2 = \frac{5}{{12}}A\), then A is equal to
1. 156
2. 301
3. 283
4. 303

1 Answer

0 votes
by (85.8k points)
selected by
 
Best answer
Correct Answer - Option 4 : 303

From question

\({S_k} = \frac{{1 + 2 + 3 + \ldots + R}}{k}\)

\(\Rightarrow {S_k} = \frac{{k\left( {k + 1} \right)}}{{2k}}\)

\(\therefore {S_k} = \frac{{k + 1}}{2}\)

So,

\(S_k^2 = {\left( {\frac{{k + 1}}{2}} \right)^2} = \frac{1}{4}{\left( {k + 1} \right)^2}\)     ----(1)

Now,

\(\Rightarrow \frac{5}{{12}}A = S_1^2 + S_2^2 + S_3^2 + \ldots S_{10}^2 = \mathop \sum \limits_{k = 1}^{10} 1S_k^2\) 

\(\Rightarrow \frac{5}{{12}}A = \frac{1}{4}\mathop \sum \limits_{k = 1}^{10} {\left( {k + 1} \right)^2} = \frac{1}{4}\left[ {{2^2} + {3^2} + {4^2} + \ldots {{11}^2}} \right]\) 

\(\because \left[ \sum {{n}^{2}}=\frac{n\left( n+1 \right)\left( 2n+1 \right)}{6} \right]\) 

\(\Rightarrow \frac{5}{{12}}A = \frac{1}{4}\left[ {\frac{{11 \times \left( {11 + 1} \right)\left( {2 \times 11 + 1} \right)}}{6} - {1^2}} \right]\) 

\(\Rightarrow \frac{5}{{12}}A = \frac{1}{4}\left[ {\frac{{11 \times 12 \times 23}}{6} - 1} \right]\) 

\(\Rightarrow \frac{5}{{12}}A = \frac{1}{4}\left[ {\left( {22 \times 23} \right) - 1} \right]\) 

\(\Rightarrow \frac{5}{{12}}A = \frac{1}{4}\left[ {506 - 1} \right]\) 

\(\Rightarrow \frac{5}{{12}}A = \frac{1}{4}\left[ {505} \right]\) 

\(\Rightarrow \frac{A}{3} = 101\) 

∴ A = 303

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...