Correct Answer - Option 3 : 12.25
From question, the expression given is:
(x + 10)50 + (x - 10)50 = a0 + a1 x + a2 x2 +…+ a50 x50
Now,
⇒ (x + 10)50 = 50C0 x50 + 50C1 x49 (10) +50C2 x48 (10)2+…+50C50 (10)50
⇒ (x - 10)50 = 50C0 x50 - 50C1 x49 (10) + 50C2 x48(10)2-…+ 50C50 (10)50
Now,
\(\Rightarrow \left[ {{}_\;^{50}{C_0}{x^{50}} + {}_\;^{50}{C_1}{x^{49}}\left( {10} \right) + {}_\;^{50}{C_2}{x^{48}}{{\left( {10} \right)}^2} + \ldots + {}_\;^{50}{C_{50}}{{\left( {10} \right)}^{50}}} \right] + \left[ {{}_\;^{50}{C_0}{x^{50}} - {}_\;^{50}{C_1}{x^{49}}\left( {10} \right) + {}_\;^{50}{C_2}{x^{48}}{{\left( {10} \right)}^2} - \ldots + {}_\;^{50}{C_{50}}{{\left( {10} \right)}^{50}}} \right] = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_{50}}{x^{50}}\)
\(\Rightarrow 2\left[ {{}_\;^{50}{C_0}{x^{50}} + {}_\;^{50}{C_2}{x^{48}}{{\left( {10} \right)}^2} + {}_\;^{50}{C_4}{x^{46}}{{\left( {10} \right)}^4} + \ldots + {}_\;^{50}{C_{48}}{x^2}{{\left( {10} \right)}^{48}} + {}_\;^{50}{C_{50}}{{\left( {10} \right)}^{50}}} \right] = {a_0} + {a_1}x + {a_2}{x^2} + \ldots + {a_{50}}{x^{50}}\)
Now, we need to compare the coefficient of a2 and a0.
Now,
⇒ a0 = 2[50C50 (10)50]
⇒ a2 = 2[50C48 (10)48]
From question,
\(\Rightarrow \frac{{{a_2}}}{{{a_0}}} = \frac{{2\left[ {{}_\;^{50}{C_{48}}{{\left( {10} \right)}^{48}}} \right]}}{{2\left[ {{}_\;^{50}{C_{50}}{{\left( {10} \right)}^{50}}} \right]}}\)
∵ [50C48 = 50C2]
\(\Rightarrow \frac{{{a_2}}}{{{a_0}}} = \frac{{2\left[ {{}_\;^{50}{C_2}{{\left( {10} \right)}^{48}}} \right]}}{{2\left[ {{}_\;^{50}{C_{50}}{{\left( {10} \right)}^{50}}} \right]}}\)
\(\Rightarrow \frac{{{a_2}}}{{{a_0}}} = \frac{{2\left[ {\left( {\frac{{50 \times 49}}{{1 \times 2}}} \right){{\left( {10} \right)}^{48}}} \right]}}{{2{{\left( {10} \right)}^{50}}}}\)
\(\Rightarrow \frac{{{a_2}}}{{{a_0}}} = \frac{{50 \times 49}}{{2\left( {10 \times 10} \right)}}\)
\(\Rightarrow \frac{{{a_2}}}{{{a_0}}} = \frac{{5 \times 49}}{{20}}\)
\(\Rightarrow \frac{{{a_2}}}{{{a_0}}} = \frac{{245}}{{20}}\)
\(\therefore \frac{{{a_2}}}{{{a_0}}} = 12.25\)