Correct Answer - Option 4 : 6.8%
Concept:
Percentage error:
Percentage error is the difference between a measured and known value, divided by the known value, multiplied by 100%. For many applications, percent error is expressed as a positive value
\({{\rm{\% }}_{{\rm{error}}}} = \left| {\frac{{{\rm{experimental\;error}} - {\rm{theoretical\;error}}}}{{{\rm{theoretical\;error}}}}} \right| \times 100\)
Calculation:
The time period is given by the formula:
\({\rm{T}} = 2{\rm{\pi }}\sqrt {\frac{l}{{\rm{g}}}} \)
We need g which is acceleration due to gravity.
So, squaring on both sides,
\( \Rightarrow {{\rm{T}}^2} = \frac{{4{{\rm{\pi }}^2}l}}{{\rm{g}}}\)
\( \Rightarrow {\rm{g}} = \frac{{4{{\rm{\pi }}^2}l}}{{{{\rm{T}}^2}}}\) ----(1)
Now, the percentage error is given by the formula:
\({{\rm{\% }}_{{\rm{error}}}} = \left| {\frac{{{\rm{experimental\;error}} - {\rm{theoretical\;error}}}}{{{\rm{theoretical\;error}}}}} \right| \times 100\)
\({{\rm{\% }}_{{\rm{error}}}} = \left( {\frac{{{\rm{change\;in\;error}}}}{{{\rm{theoretical\;error}}}}} \right) \times 100\)
Now, the error for the equation (1) is:
\(\left| {\frac{{{\rm{\Delta g}}}}{{\rm{g}}}} \right| = \left| {\frac{{{\rm{\Delta }}l}}{l}} \right| + 2\left| {\frac{{{\rm{\Delta T}}}}{{\rm{T}}}} \right|\)
Now, the percentage error for the equation (1) is:
\(\left| {\frac{{{\rm{\Delta g}}}}{{\rm{g}}}} \right|{\rm{\% }} = \left| {\frac{{{\rm{\Delta }}l}}{l}} \right|{\rm{\% }} + 2\left| {\frac{{{\rm{\Delta T}}}}{{\rm{T}}}} \right|{\rm{\% }}\)
The total error is least count value,
\( \Rightarrow \left| {\frac{{{\rm{\Delta g}}}}{{\rm{g}}}} \right|{\rm{\% }} = \left( {\frac{{0.1}}{{55}} \times 100} \right) + 2\left( {\frac{1}{{30}} \times 100} \right)\)
∵ 1 mm = 0.1 cm
\( \Rightarrow \left| {\frac{{{\rm{\Delta g}}}}{{\rm{g}}}} \right|{\rm{\% }} = 0.18 + 6.66\)
\(\therefore \left| {\frac{{{\rm{\Delta g}}}}{{\rm{g}}}} \right|{\rm{\% }} = 6.84{\rm{\% }} \approx 6.8{\rm{\% }}\)