Correct Answer - Option 1 :
\(\frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {ln\;2 - 25} \right) + \frac{{47b}}{2}} \right]\)
Given x as non- zero,
\(af\left( x \right) + bf\left( {\frac{1}{x}} \right) = \frac{1}{x} - 25\) ---(1)
Consider x as 1/x
\(af\left( {\frac{1}{x}} \right) + bf\left( {\frac{1}{{\frac{1}{x}}}} \right) = x - 25\)
\(af\left( {\frac{1}{x}} \right) + bf\left( x \right) = x - 25\) ---(2)
Multiply equation 1 by a and 2 by b and subtract both
\({a^2}f\left( x \right) + abf\left( {\frac{1}{x}} \right) - abf\left( {\frac{1}{x}} \right) - {b^2}f\left( x \right) = \frac{a}{x} - 25a - bx + 25b\)
\({a^2}f\left( x \right) - {b^2}f\left( x \right) = \frac{a}{x} - 25a - bx + 25b\)
\(f\left( x \right) = \frac{a}{{x\left( {{a^2} - {b^2}} \right)}} - \frac{{bx}}{{{a^2} - {b^2}}} - \frac{{5\left( {a - b} \right)}}{{{a^2} - {b^2}}}\)
\(\mathop \smallint \limits_1^2 f\left( x \right)dx = \frac{1}{{{a^2} - {b^2}}}\left[ {a\left( {log2 - 25} \right) + \frac{{47b}}{2}} \right]\)