Correct Answer - Option 3 :
\(\left( {\frac{3}{4},\frac{7}{4}} \right)\)
A secant of a parabola is a line, or line segment, that joins two distinct points on the parabola. A tangent is a line that touches the parabola at exactly one point.
To find intersection point of x2 + y2 = 5 and y2 = 4x substitute y2 = 4x in x2 + y2 = 5 we get
⇒ x2 + 4x – 5 = 0
⇒ x2 + 5x – x – 5 = 0
⇒ x(x + 5) – 1(x + 5) = 0
⇒ (x – 1)(x + 5) = 0
∴ x = 1, -5
∴ y2 = 4x = 4(1) = 4
⇒ y = 2
Intersection point in 1st quadrant be (1, 2).
Now, equation of tangent to y2 = 4x at (1, 2) is
y × 2 = 2(x + 1)
⇒ y = x + 1
⇒ x – y + 1 = 0 ----(1)
By substituting the values given in options in equation (1), we get
Option A, \(\left( { - \frac{1}{3},\;\frac{4}{3}} \right) \Rightarrow - \frac{1}{3} - \frac{4}{3} + 1 = - \frac{5}{3} + 1 \ne 0\)
Option B, \(\left( {\frac{1}{4},\frac{3}{4}} \right) \Rightarrow \frac{1}{4} - \frac{3}{4} + 1 = - \frac{2}{4} + 1 \ne 0\)
Option C, \(\left( {\frac{3}{4},\frac{7}{4}} \right) \Rightarrow \frac{3}{4} - \frac{7}{4} + 1 = - \frac{4}{4} + 1 = 0\)
Option D, \(\left( { - \frac{1}{4},\frac{1}{2}} \right) \Rightarrow - \frac{1}{4} - \frac{1}{2} + 1 = - \frac{3}{4} + 1 \ne 0\)
Hence, \(\left( {\frac{3}{4},\frac{7}{4}} \right)\) lies on (1)
Thus, option (c) is the correct answer.