Correct Answer - Option 2 : 1.667 × 10
-2 mol L
-1 min
-1
Concept:
Nitrogen dioxide (NO2) is a highly reactive gas which is also termed as nitrogen oxide and it has a high temperature of reddish-brown gas.
From the question, the reaction given is:
2N2O5 (g) → 4NO2 (g) + O2 (g)
Rate of reaction \(\Rightarrow \frac{{ - 1}}{2}\frac{{d\left[ {{N_2}{O_5}} \right]}}{{dt}} = \frac{1}{4}\frac{{d\left[ {N{O_2}} \right]}}{{dt}} = \frac{{d\left[ {{O_2}} \right]}}{{dt}}\)
Rate of reaction \(\Rightarrow \frac{{d\left[ {N{O_2}} \right]}}{{dt}} = \frac{{ - 4}}{2}\frac{{d\left[ {{N_2}{O_5}} \right]}}{{dt}}\)
Rate of reaction \(\Rightarrow \frac{{d\left[ {N{O_2}} \right]}}{{dt}} = - 2\frac{{d\left[ {{N_2}{O_5}} \right]}}{{dt}}\)
Calculation:
According to the question,
\(\frac{{ - d\left[ {{N_2}{O_5}} \right]}}{{dt}} = - \frac{{\left( {2.75 - 3} \right)}}{{30}} = \frac{{0.25}}{{30}}\;M\;{\rm{mi}}{{\rm{n}}^{ - 1}} = \frac{1}{{120}}\;M\;{\rm{mi}}{{\rm{n}}^{ - 1}}\)
Now,
\(\frac{{d\left[ {N{O_2}} \right]}}{{dt}} = 2 \times \frac{{ - d\left[ {{N_2}{O_5}} \right]}}{{dt}} = 2 \times \frac{1}{{120}}\)
\(\therefore \frac{{d\left[ {N{O_2}} \right]}}{{dt}} = \frac{1}{{60}}M\;{\rm{mi}}{{\rm{n}}^{ - 1}}\)
Thus, the
rate of formation of
\(\therefore \frac{{d\left[ {N{O_2}} \right]}}{{dt}} = \frac{1}{{60}}M\;{\rm{mi}}{{\rm{n}}^{ - 1}}\) 1.667 × 10
-2 M min
-1