Correct Answer - Option 3 :
\({\rm{co}}{{\rm{s}}^{ - 1}}\left( {\frac{{{n^2} - 1}}{{{n^2} + 1}}} \right)\)
Concept:
Given,
Magnitude of A = Magnitude of B
|A| = |B|
Or A = B ----(1)
Let magnitude of (A + B) is R and for (A – B) is R'.
Given, magnitude of R is n times the magnitude of R'
Thus, R = nR'
Now,
R = A + B
R2 = A2 + B2 + 2AB cos θ
[∵using equation (1)]
R2 = A2 + A2 + 2AA cos θ
R2 = 2A2 + 2A2 cos θ ----(2)
Again,
R' = A – B
\({\left( {R'} \right)^2} = {A^2} + {B^2} - 2AB\cos \theta\)
[∵ using equation (1)]
\({\left( {R'} \right)^2} = {A^2} + {A^2} - 2AA\cos \theta\)
\({\left( {R'} \right)^2} = 2{A^2} - 2{A^2}\cos \theta\) ----(3)
Calculation:
Given
R = nR'
\({\left( {\frac{R}{{R'}}} \right)^2} = {n^2}\)
Dividing equation (ii) with equation (iii), we get
\({n^2} = \frac{{2{A^2} + 2{A^2}\cos \theta }}{{2{A^2} - 2{A^2}\cos \theta }}\)
\({n^2} = \frac{{2{A^2}\left( {1 + \cos \theta } \right)}}{{2{A^2}\left( {1 - \cos \theta } \right)}}\)
\(\frac{{{n^2}}}{1} = \frac{{1 + \cos \theta }}{{1 - \cos \theta }}\)
Thus,
\({n^2} = \frac{{1 + \cos \theta }}{{1 - \cos \theta }}\)
The value of \(\frac{{{n^2} - 1}}{{{n^2} + 1}}\) will be,
\(\frac{{{n^2} - 1}}{{{n^2} + 1}} = \frac{{\left( {\frac{{1 + \cos \theta }}{{1 - \cos \theta }}} \right) - 1}}{{\left( {\frac{{1 + \cos \theta }}{{1 - \cos \theta }}} \right) + 1\;}}\)
\(\frac{{{n^2} - 1}}{{{n^2} + 1}} = \frac{{\left( {\frac{{1 + \cos \theta - \left( {1 - \cos \theta } \right)}}{{1 - \cos \theta }}} \right)}}{{\left( {\frac{{1 + \cos \theta + \left( {1 - \cos \theta } \right)}}{{1 - \cos \theta }}} \right)\;}}\)
\(\frac{{{n^2} - 1}}{{{n^2} + 1}} = \frac{{\left( {1 + {\rm{cos}}\theta } \right) - \left( {1 - {\rm{cos}}\theta } \right)}}{{\left( {1 + {\rm{cos}}\theta } \right) + \left( {1 - {\rm{cos}}\theta } \right)}}\)
\(\frac{{{n^2} - 1}}{{{n^2} + 1}} = \frac{{2{\rm{cos}}\theta }}{2} = {\rm{cos}}\theta \)
\(\theta = {\cos ^{ - 1}}\left( {\frac{{{n^2} - 1}}{{{n^2} + 1}}} \right)\;\)
The angle between A and B is
\({\cos ^{ - 1}}\left( {\frac{{{n^2} - 1}}{{{n^2} + 1}}} \right)\;\)