Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
219 views
in Physics by (96.6k points)
closed by
At a given instant, say t = 0, two radioactive substances A and B have equal activities. The ratio \(\frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}}\) of their activities after time t itself decays with time t as e-3t. If the half-life of A is ln2, the half-life of B is:
1. 4ln 2
2. \(\frac{{{\rm{ln\;}}2}}{2}\)
3. \(\frac{{{\rm{ln\;}}2}}{4}\)
4. 2ln 2

1 Answer

0 votes
by (85.8k points)
selected by
 
Best answer
Correct Answer - Option 3 : \(\frac{{{\rm{ln\;}}2}}{4}\)

Concept:

Radioactive decay occurs in unstable atomic nuclei that is, ones that don’t have enough binding energy to hold the nucleus together due to an excess protons or neurons.

The activity of the radioactive material is given by the formula:

R = λN

λ = decay constant (s-1)

N = Number of nuclei of radioactive material

Calculation:

The activity for substance A is given by the formula:

RA = λA NA

At t = 0, Number of undecayed nuclei (N0A) = Number of nuclei of radioactive material (NA)

⇒ RA = λA N0A

The activity for substance B is given by the formula:

RB = λB NB

At t = 0, Number of undecayed nuclei (N0B) = Number of nuclei of radioactive material (NB)

⇒ RB = λB N0B

At t = 0, two radioactive substances A and B have equal activities:

λA N0A = λB N0B

\(\Rightarrow \frac{{{{\rm{N}}_{0{\rm{B}}}}}}{{{{\rm{N}}_{0{\rm{A}}}}}} = \frac{{{{\rm{\lambda }}_{\rm{A}}}}}{{{{\rm{\lambda }}_{\rm{B}}}}}\)        ----(1)

The half-life is given by the formula:

\({{\rm{T}}_{1/2}} = \frac{{{\rm{ln\;}}2}}{{\rm{\lambda }}}\) 

From the question, the half-life of A is ln 2.

\(\Rightarrow {{\rm{T}}_{\left( {1/2} \right){\rm{A}}}} = \frac{{{\rm{ln\;}}2}}{{{{\rm{\lambda }}_{\rm{A}}}}}\) 

\(\Rightarrow {\rm{ln\;}}2 = \frac{{{\rm{ln\;}}2}}{{{{\rm{\lambda }}_{\rm{A}}}}}\) 

∴ λA = 1        ----(2)      

At t = t, the activity is given as:

\(\frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = \frac{{{{\rm{\lambda }}_{\rm{B}}}{{\rm{N}}_{\rm{B}}}}}{{{{\rm{\lambda }}_{\rm{A}}}{{\rm{N}}_{\rm{A}}}}}\) 

We know that, N = N0 e-λt

\(\Rightarrow \frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = \frac{{{{\rm{\lambda }}_{\rm{B}}}{{\rm{N}}_{0{\rm{B}}}}{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{B}}}{\rm{t}}}}}}{{{{\rm{\lambda }}_{\rm{A}}}{{\rm{N}}_{0{\rm{A}}}}{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{A}}}{\rm{t}}}}}} = {{\rm{e}}^{ - 3{\rm{t}}}}\) 

\(\Rightarrow \frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = \frac{{{{\rm{\lambda }}_{\rm{B}}}}}{{{{\rm{\lambda }}_{\rm{A}}}}} \times \frac{{{{\rm{\lambda }}_{\rm{A}}}}}{{{{\rm{\lambda }}_{\rm{B}}}}} \times \frac{{{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{B}}}{\rm{t}}}}}}{{{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{A}}}{\rm{t}}}}}} = {{\rm{e}}^{ - 3{\rm{t}}}}\) 

On substituting, equation (1) in above equation,

\(\Rightarrow \frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = \frac{{{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{B}}}{\rm{t}}}}}}{{{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{A}}}{\rm{t}}}}}}\) 

\(\Rightarrow \frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = {{\rm{e}}^{\left( {{{\rm{\lambda }}_{\rm{A}}} - {{\rm{\lambda }}_{\rm{B}}}} \right){\rm{t}}}} = {{\rm{e}}^{ - 3{\rm{t}}}}\) 

On equating power terms,

⇒ (λA - λB)t = -3t

⇒ λA - λB = -3

From equation (2),

⇒ λB = 3

∴ λB = 4

Now, the half-life of B is:

\(\Rightarrow {{\rm{T}}_{\left( {1/2} \right){\rm{B}}}} = \frac{{{\rm{ln\;}}2}}{{{{\rm{\lambda }}_{\rm{B}}}}}\) 

\(\therefore {{\rm{T}}_{\left( {1/2} \right){\rm{B}}}} = \frac{{{\rm{ln\;}}2}}{4}\) 

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...