Correct Answer - Option 3 :
\(\frac{{{\rm{ln\;}}2}}{4}\)
Concept:
Radioactive decay occurs in unstable atomic nuclei that is, ones that don’t have enough binding energy to hold the nucleus together due to an excess protons or neurons.
The activity of the radioactive material is given by the formula:
R = λN
λ = decay constant (s-1)
N = Number of nuclei of radioactive material
Calculation:
The activity for substance A is given by the formula:
RA = λA NA
At t = 0, Number of undecayed nuclei (N0A) = Number of nuclei of radioactive material (NA)
⇒ RA = λA N0A
The activity for substance B is given by the formula:
RB = λB NB
At t = 0, Number of undecayed nuclei (N0B) = Number of nuclei of radioactive material (NB)
⇒ RB = λB N0B
At t = 0, two radioactive substances A and B have equal activities:
λA N0A = λB N0B
\(\Rightarrow \frac{{{{\rm{N}}_{0{\rm{B}}}}}}{{{{\rm{N}}_{0{\rm{A}}}}}} = \frac{{{{\rm{\lambda }}_{\rm{A}}}}}{{{{\rm{\lambda }}_{\rm{B}}}}}\) ----(1)
The half-life is given by the formula:
\({{\rm{T}}_{1/2}} = \frac{{{\rm{ln\;}}2}}{{\rm{\lambda }}}\)
From the question, the half-life of A is ln 2.
\(\Rightarrow {{\rm{T}}_{\left( {1/2} \right){\rm{A}}}} = \frac{{{\rm{ln\;}}2}}{{{{\rm{\lambda }}_{\rm{A}}}}}\)
\(\Rightarrow {\rm{ln\;}}2 = \frac{{{\rm{ln\;}}2}}{{{{\rm{\lambda }}_{\rm{A}}}}}\)
∴ λA = 1 ----(2)
At t = t, the activity is given as:
\(\frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = \frac{{{{\rm{\lambda }}_{\rm{B}}}{{\rm{N}}_{\rm{B}}}}}{{{{\rm{\lambda }}_{\rm{A}}}{{\rm{N}}_{\rm{A}}}}}\)
We know that, N = N0 e-λt
\(\Rightarrow \frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = \frac{{{{\rm{\lambda }}_{\rm{B}}}{{\rm{N}}_{0{\rm{B}}}}{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{B}}}{\rm{t}}}}}}{{{{\rm{\lambda }}_{\rm{A}}}{{\rm{N}}_{0{\rm{A}}}}{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{A}}}{\rm{t}}}}}} = {{\rm{e}}^{ - 3{\rm{t}}}}\)
\(\Rightarrow \frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = \frac{{{{\rm{\lambda }}_{\rm{B}}}}}{{{{\rm{\lambda }}_{\rm{A}}}}} \times \frac{{{{\rm{\lambda }}_{\rm{A}}}}}{{{{\rm{\lambda }}_{\rm{B}}}}} \times \frac{{{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{B}}}{\rm{t}}}}}}{{{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{A}}}{\rm{t}}}}}} = {{\rm{e}}^{ - 3{\rm{t}}}}\)
On substituting, equation (1) in above equation,
\(\Rightarrow \frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = \frac{{{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{B}}}{\rm{t}}}}}}{{{{\rm{e}}^{ - {{\rm{\lambda }}_{\rm{A}}}{\rm{t}}}}}}\)
\(\Rightarrow \frac{{{{\rm{R}}_{\rm{B}}}}}{{{{\rm{R}}_{\rm{A}}}}} = {{\rm{e}}^{\left( {{{\rm{\lambda }}_{\rm{A}}} - {{\rm{\lambda }}_{\rm{B}}}} \right){\rm{t}}}} = {{\rm{e}}^{ - 3{\rm{t}}}}\)
On equating power terms,
⇒ (λA - λB)t = -3t
⇒ λA - λB = -3
From equation (2),
⇒ λB = 3
∴ λB = 4
Now, the half-life of B is:
\(\Rightarrow {{\rm{T}}_{\left( {1/2} \right){\rm{B}}}} = \frac{{{\rm{ln\;}}2}}{{{{\rm{\lambda }}_{\rm{B}}}}}\)
\(\therefore {{\rm{T}}_{\left( {1/2} \right){\rm{B}}}} = \frac{{{\rm{ln\;}}2}}{4}\)