Correct Answer - Option 4 :
\({\rm{lo}}{{\rm{g}}_{\rm{e}}}\left| {{\rm{sec}}\left( {\frac{{{{\rm{x}}^2} - 1}}{2}} \right)} \right| + {\rm{c}}\)
From question, the integral given can be taken as I:
\(\Rightarrow {\rm{I}} = \smallint {\rm{x}}\sqrt {\frac{{2{\rm{sin}}\left( {{{\rm{x}}^2} - 1} \right) - {\rm{sin}}2\left( {{{\rm{x}}^2} - 1} \right)}}{{2{\rm{sin}}\left( {{{\rm{x}}^2} - 1} \right) + {\rm{sin}}2\left( {{{\rm{x}}^2} - 1} \right)}}} {\rm{dx}}\)
\(\because \frac{{{\text{x}}^{2}}-1}{2}=\text{ }\!\!\theta\!\!\text{ }\)
⇒ x2 – 1 = 2θ
\(\Rightarrow 2{\rm{x}}\frac{{{\rm{dx}}}}{{{\rm{d\theta }}}} = 2\)
\(\Rightarrow {\rm{x}}\frac{{{\rm{dx}}}}{{{\rm{d\theta }}}} = 1\)
∴ xdx = dθ
\(\Rightarrow {\rm{I}} = \smallint \sqrt {\frac{{2{\rm{sin}}2{\rm{\theta }} - {\rm{sin}}2\left( {2{\rm{\theta }}} \right)}}{{2{\rm{sin}}2{\rm{\theta }} + {\rm{sin}}2\left( {2{\rm{\theta }}} \right)}}} {\rm{d\theta }}\)
\(\Rightarrow {\rm{I}} = \smallint \sqrt {\frac{{2{\rm{sin}}2{\rm{\theta }} - {\rm{sin}}4{\rm{\theta }}}}{{2{\rm{sin}}2{\rm{\theta }} + {\rm{sin}}4{\rm{\theta }}}}} {\rm{d\theta }}\)
∵ [sin 2θ = 2 sin θ cos θ ⇒ sin 4θ = sin 2(2θ) = 2 sin 2θ cos 2θ]
\(\Rightarrow {\rm{I}} = \smallint \sqrt {\frac{{2{\rm{sin}}2{\rm{\theta }} - 2\sin 2{\rm{\theta }}\cos 2{\rm{\theta }}}}{{2{\rm{sin}}2{\rm{\theta }} + 2\sin 2{\rm{\theta }}\cos 2{\rm{\theta }}}}} {\rm{d\theta }}\)
\(\Rightarrow {\rm{I}} = \smallint \sqrt {\frac{{2{\rm{sin}}2{\rm{\theta }}\left( {1 - \cos 2{\rm{\theta }}} \right)}}{{2{\rm{sin}}2{\rm{\theta }}\left( {1 + \cos 2{\rm{\theta }}} \right)}}} {\rm{d\theta }}\)
\(\Rightarrow {\rm{I}} = \smallint \sqrt {\frac{{1 - \cos 2{\rm{\theta }}}}{{1 + \cos 2{\rm{\theta }}}}} {\rm{\;d\theta }}\)
∵ [1 – cos 2θ = 2 sin2 θ]
∵ [1 + cos 2θ = 2 cos2 θ]
\(\Rightarrow {\rm{I}} = \smallint \sqrt {\frac{{2{{\sin }^2}{\rm{\theta }}}}{{2{{\cos }^2}{\rm{\theta }}}}} {\rm{d\theta }}\)
\(\Rightarrow {\rm{I}} = \smallint \sqrt {{{\tan }^2}{\rm{\theta }}} {\rm{d\theta }}\)
\(\Rightarrow {\rm{I}} = \smallint \left( {\tan {\rm{\theta }}} \right){\rm{d\theta }}\)
⇒ I = loge |sec θ|+ C
Now, putting the value of θ,
\(\therefore {\rm{I}} = {\log _{\rm{e}}}\left| {\sec \left( {\frac{{{{\rm{x}}^2} - 1}}{2}} \right)} \right| + {\rm{C}}\)