Correct Answer - Option 3 : 25
From question, the number of ways in which a team of 3 contains at least one boy or at least one girl.
Let ‘N’ denote number of ways.
From question,
⇒ N = 1750
Now,
⇒ N = (1B and 2G) + (2B and 1G) = 1750
⇒ N = (5C1 × nC2) + (5C2 × nC1) = 1750
\(\Rightarrow N = \left( {5 \times \left( {\frac{{n\left( {n - 1} \right)}}{2}} \right)} \right) + \left( {10 \times n} \right) = 1750\)
\(\Rightarrow N = \frac{{5{n^2} - 5n + 20n}}{2} = 1750\)
\(\Rightarrow N = \frac{{5{n^2} + 15n}}{2} = 1750\)
⇒ 5n2 + 15n = 3500
⇒ 5(n2 + 3n) = 3500
⇒ n2 + 3n = 700
⇒ n2 + 3n – 700 = 0
⇒ n2 + 28n – 25n – 700 = 0
⇒ n(n + 28) – 25(n + 28) = 0
⇒ (n – 25)(n + 28) = 0
∴ n = 25, -28
Negative value is not possible.
∴ n = 25