Use app×
QUIZARD
QUIZARD
JEE MAIN 2026 Crash Course
NEET 2026 Crash Course
CLASS 12 FOUNDATION COURSE
CLASS 10 FOUNDATION COURSE
CLASS 9 FOUNDATION COURSE
CLASS 8 FOUNDATION COURSE
0 votes
343 views
in Mathematics by (96.6k points)
closed by
The Fourier transform of \({e^{ - \frac{{{x^2}}}{2}}}\) is
1. \(\frac{1}{2} \cdot {e^{ - \frac{{{\omega ^2}}}{2}}}\)
2. \({e^{ - \frac{{{\omega ^2}}}{2}}}\)
3. \(\frac{\pi }{2}\)
4. \(\sqrt \pi\)

1 Answer

0 votes
by (85.8k points)
selected by
 
Best answer
Correct Answer - Option 2 : \({e^{ - \frac{{{\omega ^2}}}{2}}}\)

Concept:

\(\frac{{d\left[ {f\left( x \right)} \right]}}{{dx}}\;\mathop \longleftrightarrow \limits^{Fourier\;transform} \;j\omega \;F\left( \omega \right)\)

\(xf\left( x \right)\mathop \longleftrightarrow \limits^{Fourier\;transform} \frac{{jd\left[ {F\left( \omega \right)} \right]}}{{d\omega }}\)

Where F(ω) is Fourier transform of f(x)

Calculation:

We are given \(f\left( x \right) = {e^{ - \frac{{{x^2}}}{2}}}\)

\(\frac{{d\left[ {f\left( x \right)} \right]}}{{dx}} = - x \cdot {e^{ - \frac{{{x^2}}}{2}}}\)       ---(1)

Take Fourier transform of above equation (1)

\(j\omega \;F\left( \omega \right) = \frac{{ - jd\left[ {F\left( \omega \right)} \right]}}{{d\omega }}\)

\(\Rightarrow \frac{1}{{F\left( \omega \right)}} \cdot d\left[ {F\left( \omega \right)} \right] = \; - \omega \;d\omega\)        ---(2)

By integrating the above equation, we get

\(ln\left[ {F\left( \omega \right)} \right] = - \frac{{{\omega ^2}}}{2}\)

\(\Rightarrow F\left( \omega \right) = {e^{ - \frac{{{\omega ^2}}}{2}}}\)

Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.

Categories

...