ω1 = 106 rad/s, ω2 = 2 × 106 rad/s
C1 = 990 pF, C2 = 240 pF
\(n = \frac{{{\omega _2}}}{{{\omega _1}}} = \frac{{2 \times {{10}^6}}}{{{{10}^6}}} = 2\)
Distributed capacitance is given by
\({C_d} = \frac{{{C_1} - {n^2}{C_2}}}{{{n^2} - 1}}\)
\(= \frac{{990 - {2^2} \times 240}}{{{2^2} - 1}} = 10\;pF\)
The inductance of the coil is given by,
\({L_{Coil}} = \frac{1}{{w_1^2\left( {{c_1} + {c_d}} \right)}} = \frac{1}{{w_2^2\left( {{c_2} + {c_d}} \right)}}\)
\(= \frac{1}{{{{\left( {{{10}^6}} \right)}^2}\left( {990 + 10} \right) \times {{10}^{ - 12}}}} = 1mH\)