Correct Answer - Option 1 : f (ξ) (b - a)
Concept:
Mean value theorem for integrals:
Let f be continuous on [a, b]. Then there is a point xo in (a, b) such that
\(f\left( {{x_o}} \right) = \frac{1}{{b - a}}{\rm{\;}}\mathop \smallint \limits_a^b f\left( x \right)dx\)
Calculation:
\(f\left( \xi \right) = \frac{1}{{b - a}}{\rm{\;}}\mathop \smallint \limits_a^b f\left( x \right)dx\)
\(\mathop \smallint \limits_a^b f\left( x \right)dx = f\left( \xi \right)\left( {b - a} \right)\)