Correct Answer - Option 2 : 164 nm
When an electron jumps from mth orbit to the nth orbit (m>n), the energy of the atom changes from Em to En. This extra energy (Em - En) is emitted as a photon of electromagnetic radiation. This corresponding wavelength is given as
\(\frac{1}{\lambda }\; = \;R{Z^2}\left( {\frac{1}{{{n^2}}} - \frac{1}{{{m^2}}}} \right)\)
Where R is the Rydberg constant = 1.0973 × 107 m - 1
Putting values z = 2, for He+ ion.
\(\begin{array}{l} \frac{1}{\lambda }\; = \;4R\left( {\frac{1}{4} - \frac{1}{{9}}} \right)\; = \;4R \times \frac{5}{{36}}\; = \;\frac{5}{{9}}R\\ \lambda \; = \;\frac{{9}}{{5R}}\; = \;\frac{{9}}{{5 \times 1.0973 \times {{10}^7}}}\; = \;164\;nm \end{array}\)