Correct Answer - Option 4 : 0.0018 K/s
Concept:
General heat conduction equation is,
\(\frac{1}{\alpha }\frac{{\partial T}}{{\partial \tau }} = \left( {\frac{{{\partial ^2}t}}{{\partial {x^2}}} + \frac{{{\partial ^2}t}}{{\partial {y^2}}} + \frac{{{\partial ^2}t}}{{\partial {x^2}}}} \right) + \frac{q}{k}\)
Calculation:
Given:
\(T = 3{x^2} + 3x + 16\)
Without heat generation (q = 0) and in x-direction only,
\(\begin{array}{l} \frac{1}{\alpha }\frac{{\partial T}}{{\partial \tau }} = \frac{{{\partial ^2}t}}{{\partial {x^2}}}\\ \frac{{\partial T}}{{\partial \tau }} = \alpha \frac{{{\partial ^2}t}}{{\partial {x^2}}}\\ \frac{{{\partial ^2}t}}{{\partial {x^2}}} = 6\\ \frac{{\partial T}}{{\partial \tau }} = \left( {0.0003} \right)\left( 6 \right) = 0.0018{\rm{\;K}}/{\rm{s}} \end{array}\)