Concept:
Equation of Gradually Varied Flow(G.V.F):
The rate of change of water depth with distance is given by,
\(\frac{{{\rm{dy}}}}{{{\rm{dx}}}} = \frac{{{{\rm{S}}_{\rm{o}}} - {{\rm{S}}_{\rm{f}}}}}{{1 - {\rm{F}}_{\rm{r}}^2}}\)
Where,
So = slope of the channel bottom
Sf = slope of the Total Energy Line(T.E.L)
Fr = Froude's number
Froude number is given by:
\({{\rm{F}}_{\rm{r}}} = \frac{{\rm{V}}}{{\sqrt {{\rm{gD}}} {\rm{\;}}}}\)
Where,
D = Y = hydraulic depth
Calculation:
B = 2m, S = - 1/10000 (- ve as bed level is rising),
Q = 4 m3/sec, n = 0.01, g = 10 m/sec2
\(\begin{array}{l} \frac{{dy}}{{dx}} = \frac{{{S_o} - {S_e}}}{{1 - F{r^2}}}\\ Fr = \frac{V}{{\sqrt {gy} }} = \frac{Q}{{2y\sqrt {gy} }} = \frac{4}{{2 \times 0.5\sqrt {10 \times 0.5} }} = 1.789\\ R = \frac{A}{P} = \frac{{2 \times 0.5}}{{2 + 2 \times 0.5}} = \frac{1}{3}\\ Q = \frac{1}{n}{R^{\frac{2}{3}}}{S^{\frac{1}{2}}}.A\\ 4 = \frac{1}{{0.01}} \times {\left( {\frac{1}{3}} \right)^{\frac{2}{3}}}\times S{_f^{\frac{1}{2}}} \times 1 \end{array}\)
Sf = 6.923 × 10-3
\(\frac{{dy}}{{dx}} = \frac{{ - \frac{1}{{10000}} - 6.923 \times {{10}^{ - 3}}}}{{1 - {{\left( {1.789} \right)}^2}}} = 0.0031\)