Correct Answer - Option 2 : 0.034
Concept:
Poisson distribution
According to the Poisson distribution probability of x = k is given by:
\(P\left( {x = k} \right) = \frac{{{\lambda ^k}{e^{ - \lambda }}}}{{k!}}\)
Calculation:
Given:
λ = 5.2
Let x be random variable which follows Poisson’s distribution
P(x < 2) = P(x = 0) + P(x = 1)
\(= \frac{{{{\rm{e}}^{ - {\rm{\lambda }}}}{{\rm{\lambda }}^0}}}{{0!}} + \frac{{{{\rm{e}}^{ - {\rm{\lambda }}}}}}{{1!}}{{\rm{\lambda }}^1} = {{\rm{e}}^{ - 5.2}}\left( {1+5.2} \right) = 0.0055 \times 6.2 = 0.034\)