Concept:
-
Reynold’s number: It is the ratio of inertia force and viscous force.
\({R_e} = \frac{{\rho VD}}{\mu }\) (for a pipe)
where,
ρ = density of the fluid, V = Velocity of fluid, D = diameter of pipe, μ = dynamic viscosity of fluid
If Reynold’s number (Re) < 2000 → flow is laminar
If Reynold’s number (Re) > 4000 → flow is turbulent
If 2000 < Re < 4000 → flow is transitional
- Pressure drop in a pipe is given by:
ΔP = \(\frac{{32\mu VL}}{{{D^2}}}\)
where,
μ = Dynamic viscosity of fluid (Ns/m2)
V = Velocity of fluid (m/s)
D = Diameter of pipe (m)
Calculation:
Given:
D = 10 mm = 0.01 m
L = 250 m
\(\begin{array}{l} \rho = 997\;kg/{m^3}\\\mu = 855 \times {10^{ - 6}}Ns/{m^2} \end{array}\)
V = 0.1 m/s
Reynold's number
\({R_e} = \frac{{\rho VD}}{\mu } = \frac{{997 \times 0.1 \times 0.01}}{{855 \times {{10}^{ - 6}}}}\)
⇒ Re = 1166.08 < 2000
∴ flow is laminar.
Pressure drop in the pipe,
\(\begin{array}{l} {\rm{\Delta }}p = \frac{{32\mu VL}}{{{D^2}}}\\ \Rightarrow \Delta p= \frac{{32 \times 0.1 \times 855 \times {{10}^{ - 6}} \times 250}}{{{{\left( {0.01} \right)}^2}}} = 6840\;Pa \end{array}\)