Correct Answer - Option 2 : 0.07
Concept:
The amplitude ‘A’ of steady-state vibration in harmonic excitation with damper is,
\(A = {x_{max}} = \frac{{{F_0}}}{{\sqrt {{{\left( {K - m{\omega ^2}} \right)}^2} + {{\left( {C\omega } \right)}^2}} }}\)
Or, \(A = \frac{{{F_0}/K}}{{\sqrt {{{\left( {1 - {{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}} \right)}^2} + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}\)
also, \(A = \frac{\delta }{{\sqrt {{{\left( {1 - {r^2}} \right)}^2} + {{\left( {2\xi r} \right)}^2}} }}\)
Where δ is static deflection of spring in m, F0 is sinusoidal force amplitude in N.
, ω is forced frequency and ωn is natural frequency of spring in rad/s
And ξ is damping factor = C/CC = actual damping coefficient/critical damping coefficient.
Calculation:
Given, force amplitude F0 = 10 N, K = 150 N/m, ξ = 0.2 and ωn = 10 ω
From, \(A = \frac{{{F_0}/K}}{{\sqrt {{{\left( {1 - {{\left( {\frac{\omega }{{{\omega _n}}}} \right)}^2}} \right)}^2} + {{\left( {2\xi \frac{\omega }{{{\omega _n}}}} \right)}^2}} }}\)
\(A = \frac{{10/150}}{{\sqrt {{{\left( {1 - {{\left( {\frac{{\rm{\omega }}}{{10{\rm{\omega }}}}} \right)}^2}} \right)}^2} + {{\left( {2 \times 0.2 \times \frac{{\rm{\omega }}}{{10{\rm{\omega }}}}} \right)}^2}} }}\)
\(A = 0.0673 \approx 0.07 m\)