Correct Answer - Option 1 : 29.7
Concept:
Work of compression in adiabatic process:
\(W_c=\frac{P_2V_2\;-\;P_1V_1}{1\;-\;\gamma}=\frac{P_1V_1\;-\;P_2V_2}{\gamma\;-\;1}\)
We know that PV = RT (for unit mass), therefore
\(W_c=\frac{RT_2\;-\;RT_1}{1\;-\;\gamma}=\frac{RT_1\;-\;RT_2}{\gamma\;-\;1}\)
Calculation:
Given:
P1 = 0.1 MPa, T1 = 300 K P2 = 0.2 MPa
For adiabatic process:
\(\frac{{{T_2}}}{{{T_1}}} = {\left( {\frac{{{P_2}}}{{{P_1}}}} \right)^{\frac{{\gamma - 1}}{\gamma }}}\)
\(\frac{{{T_2}}}{{{300}}} = {\left( {\frac{{{0.2}}}{{{0.1}}}} \right)^{\frac{{\gamma - 1}}{\gamma }}}\)
T2 = 396.18 K
And, \(R =\frac{\bar{R}}{M}= \frac{{8.314}}{{40}}\) = 0.207 kJ/kg-K
\(W_c= \frac{{R{T_1} - R{T_2}}}{{\gamma - 1}}\) = \(\frac{{0.207\left( {300\; -\; 396.18} \right)}}{{1\; - 1.67}}\) = -29.7 kJ/kg