Correct Answer - Option 4 : 6xy + k
μ = 3x2 – 3y2
\(\frac{{\partial \mu }}{{\partial x}} = 6x\ \&\ \frac{{\partial \mu }}{{\partial y}} = - 6y\)
By Cauchy-Riemann equation
\(\begin{array}{l}
\frac{{\partial \mu }}{{\partial x}} = \frac{{\partial \nu }}{{\partial y}}\ \&\ \frac{{\partial \mu }}{{\partial y}} = - \frac{{\partial \nu }}{{\partial x}}\\
\therefore \frac{{\partial \nu }}{{\partial y}} = 6x\ \&\ \frac{{\partial \nu }}{{\partial x}} = 6y
\end{array}\)
We know
\(dv = \frac{{\partial \nu }}{{\partial x}}dx + \frac{{\partial \nu }}{{\partial y}}dy\)
⇒ dv = 6ydx + 6xdy
On integration
ν = 6xy + k where k is constant