Correct Answer - Option 3 : Rs. 69878
Given:
P = 50000, A = 60500, T1 = 2, R = ?
Formula used:
\(\Rightarrow Amount = P \times {\left( {1 + \frac{R}{{100}}} \right)^T}\)
Calculation:
\(60500 = 50000 \times {\left( {1 + \frac{{R}}{{100}}} \right)^2} \)
⇒ \({\left( {1 + \frac{{R}}{{100}}} \right)^2} = \frac{121}{100}\)
⇒ \({\left( {1 + \frac{{R}}{{100}}} \right)^2} = {\left( {\frac{{121}}{{100}}} \right)^2}\)
⇒ \({\left( {1 + \frac{{R}}{{100}}} \right)} = {\left( {\frac{{121}}{{100}}} \right)}\)
⇒ \(R = 21\%\)
Now;
P = 50000, R = 21%, T2 = \(3\dfrac{1}{2}\)
\(A= 50000 \times {\left( {1 + \frac{{21}}{{100}}} \right)^\frac{7}{2}} \)
⇒ \(A= 50000 \times {\left( {\frac{{121}}{{100}}} \right)^\frac{7}{2}} \)
⇒ \(A= 50000 \times {\left( {\frac{{11}}{{10}}} \right)^7} \)
⇒ A = 97435.85
Hence, "97435.85" is the correct answer.